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Abstract

This work presents a numerical model, based on the finite volume method, to study the dynamics of the impact/

absorption of a liquid droplet impinging on a porous medium. To accurately represent the dynamics of the fluid flow

special attention is given to the effects of surface tension and capillary forces, the movement of the free surface inside the

porous medium, and the link between the fluid flow outside and inside the porous medium. The method of marker

particles is used to track the position and the shape of the liquid region. The SIMPLEC algorithm is selected to solve the

pressure–velocity coupling. In order to verify the accuracy of the proposed computational model, its predictions have

been compared with data from a number of experimental studies dealing with various aspects of the overall behaviour.

In general, the model shows a good level of agreement with these experimental data.

� 2004 Published by Elsevier Inc.
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1. Introduction

Numerical and experimental investigations of the impact of liquid droplets on porous surfaces are im-

portant for a wide range of situations, varying from environmental applications to inkjet printing tech-
nology. A few studies have been specifically concerned with droplet impingement on permeable surfaces,

among others [1–5]. Although these studies present detailed experimental investigations of the phenome-

non, the experimental techniques that were used imposed serious limits on the amount of information

obtained concerning the behaviour inside the porous substrate, as well as on the minimum time scale re-

solved. Thus, it is possible to analyse the influence of the governing parameters on the final shape of the

impinged/absorbed droplet, but it is not possible by these methods to resolve the mechanisms while they are
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occurring. By contrast, a numerical investigation of the fluid flow dynamics during the impact/absorption

phenomenon can resolve these mechanisms, and enable a better understanding of the process.

There is a substantial amount of work published in the literature about numerical models for the
impact of liquid droplets upon solid surfaces. One of the first reported studies was performed by Harlow

and Shannon [6], who used the ‘‘marker-and-cell’’ (MAC) finite-difference method to simulate a liquid

droplet impact and deformation, neglecting the effects of viscosity and surface tension to simplify the

problem. Subsequently, Tsurutani et al. [7] enhanced the MAC model to include surface tension and

viscosity effects, improving considerably the accuracy of the simulations. Since then, numerous papers

have been published reporting two-dimensional and three-dimensional [8–10] droplet impact simulations

and the introduction of more refined numerical techniques to improve predictions, including the use of

adaptative grids [11–13].
All models described above were mainly concerned with the impact of liquid droplets on a non-per-

meable surface. In spite of the importance of the numerical study of the impact of droplets on permeable

surfaces for a wide range of applications, there appear to be no reported studies in the literature. Most of

the studies on droplets absorption by porous media are based on the use of the viscous-controlled Lucas–

Washburn absorption theory to predict the spread and absorption of the liquid by the porous substrate,

such as [14,15]. More recently, Seveno et al. [16] combined the dynamics of spreading for sessile drops and

the Lucas–Washburn equation to describe the dynamics of droplets spreading on a porous surface.

However, these models did not include the inertial effects related to impact simulations, and were mostly
focused on the spontaneous spreading of droplets resting on porous surfaces.

The work reported here presents a numerical model to study the dynamics of the impact/absorption of a

liquid droplet on a porous medium. As depicted in Fig. 1, this problem addresses a more complicated set of

physical phenomena than impingement on non-permeable surfaces, since at the same time that the axial

momentum of the droplet is transformed to radial momentum, the pressure at the impact point also forces

the liquid to move through the permeable surface and into the substrate. Furthermore, capillary effects and

wettability tend to draw the liquid into the porous substrate.

Accordingly, there are three main issues that need to be addressed in order to obtain a mathematical
description of the phenomenon: (i) the fluid flow outside and inside the porous medium, (ii) the flow

through the atmosphere/porous medium interface, and (iii) the treatment of the free surface of the liquid

droplet. In order to represent these features accurately, an algorithm based on the finite volume technique

[17] and the marker-particle technique [18] is presented, including the effects of surface tension inside and

outside the porous medium, as well as the drag imposed by the solid particles in the porous substrate. In

order to verify the accuracy of the computational model, comparisons were made with data from previous
(a) (b)

Fig. 1. Schematic representation of the droplet impingement problem: (a) impingement on a non-permeable flat surface and

(b) impingement on a permeable flat surface.
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experimental work [4,5,19–21], including photographic records of droplet behaviour during impact, mea-

sured values of the droplet spread ratio, and Nuclear Magnetic Resonance (NMR) images of the liquid

within the porous substrate.
2. Mathematical modelling

The fluid flow described above represents a typical case of a free surface flow. Fluid flows are classified as

free surface flows when a fluid has one or more boundaries in the form of interfaces with another fluid and

the external fluid has a negligible influence on the motion of the internal fluid [6,7,10–13]. This assumption

is valid, typically, in situations where the viscosity and density of the internal fluid are much larger than the
viscosity and density of the external fluid.

Free surface flows represent a particular case of two-phase flows. An extension of a free surface flow

computational method to a two-phase flow calculation would not represent a significant increase in

complexity, if the same equations were applied to both phases and solved along with the full boundary

conditions at the interface. However, when the influence of the external fluid is negligible, it is more cost-

effective to solve a single-phase problem and neglect the effects of the external fluid.

In this work, the calculations start at the moment that the droplet comes in contact with the porous

surface. From this instant, the influence of the external fluid (atmosphere) can be neglected, in accordance
with the basic assumption of a free surface flow. Under these conditions, viscous stress at the free surface

interface can be neglected, making the tangential stress equal to zero at the free surface and the normal

stress determined by surface tension, curvature and outer pressure.

The fluid flow in the core of the liquid droplet is governed by the momentum conservation and conti-

nuity equations, both outside the porous medium and inside the microscopic pores of the porous medium.

Momentum and continuity equations could be used throughout both regions, as long as the shape and

dimensions of each particle of the porous substrate are accounted for when the shape of the computational

domain is defined. Obviously, this approach is far from practical, due to the complexity of the porous
network and the number of particles forming a porous material.

It is therefore necessary to change from a microscopic field of view, where continuity and momentum

equations are valid and the porous network is rather chaotic, to a macroscopic field of view, where the

effects of the porous network can be treated as averaged quantities. As a consequence, the governing

equations of the fluid flow inside the porous substrate are slightly different from the usual momentum and

continuity equations, since they have to account for the averaged effects of the porous substrate on the fluid

flow, namely viscous friction and the pressure drag of the solid matrix.

Although each region of the fluid flow is governed by a different set of equations, it is important to note
that momentum matching conditions at the interface between the two regions must be observed, since both

sets of equations must express the overall momentum conservation. In the following sections the funda-

mental equations governing the phenomenon are presented, along with the treatment of the free surface of

the fluid inside and outside the porous substrate.
2.1. Co-ordinate definition

Before introducing the fundamental equations governing the phenomenon, it is important to define the
co-ordinate system and the mathematical notation used. In view of the symmetrical nature of the problem,

governing equations are written in cylindrical co-ordinates and in the axi-symmetric form. Accordingly, the

problem is described in a two-dimensional form, where x and r are the axial and radial co-ordinates, re-

spectively, as shown in Fig. 2.



Fig. 2. Co-ordinate system in the computational domain.

750 N.C. Reis Jr. et al. / Journal of Computational Physics 198 (2004) 747–770
2.2. Governing equations outside the porous medium

As explained above, the fluid flow is governed by the continuity of mass and momentum conservation

equations. The equations for constant density (q) and viscosity (l) are given by

r � u ¼ 0; ð1Þ
q
ou

ot

�
þ u � ru

�
¼ rrþ qg; ð2Þ

where u is the velocity vector, p is the pressure, g is the acceleration due to gravity and r is the stress tensor,

which can be written for a Newtonian fluid as

r ¼ �pIþ 2lru: ð3Þ
2.2.1. Treatment of the free surface

At the free surface the influence of the viscous stress due to the action of the external fluid is negligible.

Thus, the tangential stress at the free surface is zero, and the normal stress is determined by surface tension,

curvature and outer pressure. Therefore, the normal stress at the free surface can be described as

rn ¼ �psn; ð4Þ

where ps is the pressure at the interface, or surface pressure, and n is the unit vector normal to the fluid

interface, whose components are nx and nr.
The surface pressure (ps) is given by the sum of the external pressure and the pressure jump due to

surface tension. For incompressible fluid flows, the outer pressure is often assumed to be constant and thus

does not influence the flow. Thus, it is possible to re-write the stress tensor at the free surface as

rn ¼ � 2cjð Þn; ð5Þ

where j is the mean surface curvature and c is the surface tension coefficient of the liquid.

2.2.2. Curvature radius and slope of the free surface

As already noted, the fluid velocity at each point of the liquid region is used to account for movement

and deformation of the fluid interface, tracking the free surface shape and location throughout the cal-
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culation. This procedure is described fully in Section 3. As the position of the free surface is known during

the calculations, the slope and orientation of the fluid interface can be used to determine the mean surface

curvature (j) and the direction of the vector normal to the fluid interface (n).
The first step is to define an appropriate co-ordinate system to account for the free surface deformation.

As shown in Fig. 3, the position of the interface is used to define an additional co-ordinate s [22], which is

measured along the free surface. Each point of the fluid interface has its position mapped by a function of s,
where x1ðsÞ indicates the position along the co-ordinate axis r for each point in s, and x2ðsÞ indicates the
position along the co-ordinate axis x for each point in s

x1ðsÞ ¼ r; x2ðsÞ ¼ x: ð6Þ

The components of the vector normal to the interface are given by

nr ¼ �x02; nx ¼ x01; ð7Þ

where the primed quantities indicate differentiation with respect to s ðx0i ¼ d½x0iðsÞ�=dsÞ. For the axi-sym-

metric configuration employed it can be shown that [22]

j ¼ x21ðx002x01 � x001x
0
2Þ þ ½ðx01Þ

2 þ ðx02Þ
2�x1x02

2x21 x01ð Þ2 þ x02ð Þ2
h i3=2 : ð8Þ

The wetting effect is usually modelled through the contact angle (h) between the solid surface and the liquid

interface. Thus, at the contact line

x01 ¼ � cos h; x02 ¼ sin h: ð9Þ

By introducing the values of these derivatives on the interpolation functions used to describe x1ðsÞ and x2ðsÞ
(which are discussed in Section 3), it is possible to determine the values of x1, x2, x001 and x002 at the contact

line, and determine the mean curvature by using Eq. 8.

The contact angle value used in the expressions above is the dynamic contact angle. Scriven [23], and

more recently Gennes [24] presented a comprehensive review of the theory of the dynamics of the fluid

interface and contact angle. The main aspect that should be considered when modelling the fluid/solid
Fig. 3. Co-ordinate definition.
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interface is that the dynamic contact angle for spreading is significantly larger than the dynamic contact

angle for recoiling.

Fukai et al. [22] propose that the variation of the contact angle can be accounted for in the math-
ematical description of the problem by the specification of different values of the contact angle h if the

contact line is advancing or recoiling. Although this approach does over-simplify the problem, since it is

known that the dynamic contact angle actually depends on the velocity of the contact line, the numerical

simulations of droplets impinging on solid surfaces obtained with this method are in very close agree-

ment with experimental observations. The accuracy of this hypothesis is mainly related to the fact that

the influence of the velocity of the contact line on the dynamic contact angle is more pronounced at very

low velocities (of the order of mm/s or less, according to [25]). By contrast, the velocity of the contact

line in impingement droplet studies can reach values higher than the impinging velocity, which is of the
order of m/s, and it is maintained at this level during the greater part of the spreading episode.

Therefore, in the present work the approach proposed by [22] is used to describe the dynamic contact

angle.
2.3. Governing equations inside the porous medium

As outlined previously, the theoretical formulation of momentum and mass transfer in porous media is

usually obtained by a change from the microscopic scale, where the representative volume is small in
comparison to the pore dimensions, to a macroscopic scale, where the size of the representative volume is

large compared to the pore dimensions. Whitaker [26], and more recently Hsu and Cheng [27], presented a

formal derivation of the general equation for fluid flow through a rigid and homogeneous porous medium.

This approach is based on a volume averaging of the microscopic conservation equations over a repre-

sentative volume, yielding the macroscopic form of the mass and momentum conservation equations in the

porous medium

r � up ¼ 0; ð10Þ
q
oup

ot

�
þ up � r

up

�

�
¼ rrp þ Bþ qg�; ð11Þ

where up is the Darcy velocity vector, also called the macroscopic averaged velocity vector in the porous

medium, � is the porosity of the medium and pp is the macroscopic averaged pressure. r denotes the

macroscopic gradient operator [27]. rp is the macroscopic stress tensor calculated using the macroscopic

averaged velocity (up) and the macroscopic averaged pressure (pp)

rp ¼ �ppIþ 2lrup: ð12Þ

According to the averaging procedure the value up denotes the product of the fluid velocity (u) by the

porosity (�), i.e., up ¼ �u. Similarly, the value of pp represents the product of the pressure (p) by the porosity

(�), i.e., pp ¼ �p [27].

B is the total drag force per unit volume (body force) due to the presence of the solid particles, which

represents the sum of the pressure drag and viscous friction. In the present work Ergun�s correlation [28] is

used to express total drag force, which can be written as

B ¼ � l�up
K

�
þ q

Fp�upjupjffiffiffiffi
K

p
�
; ð13Þ
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where K and Fp are the permeability and the inertia factor. For a randomly packed bed of spheres such

coefficients can be expressed in terms of the porosity (�) and the diameter of the particles in the porous

medium (dp) as

K ¼
�2d2

p

c1ð1� �Þ2
; Fp ¼

c2ffiffiffiffi
c1

p
�3=2

; ð14Þ

where c1 and c2 are empirical constants (c1 ¼ 150 and c2 ¼ 1:75). These relationships have been extensively

validated and utilised to model fluid flows through porous substrates, among others [27,29,30].

2.3.1. Treatment of the free surface

The treatment given to the free surface outside the porous medium should also be applied to the free

surface inside. However, in contrast with the macroscopic curvature radius of a free surface outside a
porous medium, the liquid inside the porous medium is restricted by the dimensions of the capillaries, as

shown in Fig. 4. Therefore, inside the porous medium the macroscopic mean curvature radius is no longer

important; instead, the microscopic curvature radius inside the capillaries is the important parameter in the

force balance. By analogy with the situation outside the porous medium, where the macroscopic curvature

radius is responsible for a surface pressure, the meniscus formed in the liquid front inside a capillary is

responsible for a surface pressure, which is called capillary pressure. This capillary pressure is extremely

dependent on the porous medium structure, since the surface tension force acting on the liquid front is

directly related to the dimensions of the capillaries.
Therefore, outside the porous medium the surface pressure is calculated as a function of the macroscopic

curvature radius (Eq. (8)), and inside the porous medium the surface pressure is set as the capillary pressure

value for a fully saturated medium. Thus, the normal component of the stress tensor on the free surface is

expressed as

rn ¼ �psn
inside the porous medium ! ps ¼ �pc;
outside the porous medium ! ps ¼ 2cj:

�
ð15Þ
Fig. 4. Representation of a liquid front inside a porous medium, where rcurv is the curvature radius and h is the contact angle.
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In order to calculate the value of rn inside the porous medium, it is necessary to determine the direction of

the unit vector normal to the free surface and the value of the capillary pressure. The same procedure used

to calculate the vector normal to the free surface outside the porous medium is used to calculate it inside the
porous medium. However, due to the different nature of the capillary pressure inside the porous substrate,

further discussion is necessary to achieve a satisfactory formulation for its value.

2.3.2. Capillary pressure

Fig. 4 depicts the liquid inside the porous medium. In this region the capillary pressure depends on the

dimensions of the capillaries and the contact angle between the liquid and solid particles. Accordingly, the

capillary pressure can be written as [31]

pc ¼ � 4c cos h
dpores

; ð16Þ

where dpores is the diameter of the capillary, c is the surface tension coefficient and h is the contact angle at

the solid/liquid interface.

If the contact angle is less than 90�, the meniscus formed inside a capillary will be concave as seen from

the empty pore space. Capillary pressure will then have a negative value, which creates a pressure differ-

ential resulting in wetting of the porous medium, i.e. the capillary pressure will tend to pull the liquid front

into the porous substrate. On the other hand, if the contact angle is larger than 90�, the meniscus will be

convex and the capillary pressure will be positive, i.e. capillary pressure will oppose the propagation of
liquid into the porous medium. In this case, the liquid will have to overcome this resistance in order to

propagate inside the porous substrate.

The porous substrate has so far been characterised by using the value of porosity (�) and the particle

diameter of the medium (dp). Eq. (16) adds one more parameter to this characterisation, namely the pore

diameter dpores.
For a wide range of situations the value of dpores=dp is approximately constant, such as for sand, glass

beads and some ceramic materials where the assumption of a perfectly packed bed of spheres is valid.

Therefore, it is convenient to re-write Eq. (16) as

pc ¼ � 4c cos h
adp

; ð17Þ

where

a ¼ dpores
dp

: ð18Þ

Before closing the discussion on the capillary pressure value, it is important to note that although the

discussions here are focused on the average pore size in the porous substrate, there is a distribution of pore

sizes around the mean value. Accordingly, the capillary pressure also depends on the level of saturation (or

concentration of liquid) in the porous medium. In this work the liquid front inside the porous medium is

treated as a sharp front, i.e. inside the region occupied by the liquid the porous medium is fully saturated

and outside the region occupied by liquid the saturation level is negligible. This approach simplifies the
problem, since it is not necessary to deal with the variation of the capillary pressure as a function of the

saturation level. In practice, however, instead of a sharp interface there is a gradient separating the satu-

rated and non-saturated regions of the porous medium, due to the effects of capillary diffusion. The ap-

proach described above limits the ability of the model to predict the capillary diffusion, since its main

mechanism is related to the variation of the capillary pressure with saturation levels [31–33]. However, as

discussed by Reis et al. [5], the time scale of the capillary diffusion is far greater than the time scale of the
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droplet impingement and absorption, which makes this transport mechanism negligible over the time frame

of droplet impingement.
2.4. Linking the external and the internal fluid flows

After determining the form of the governing equations of the phenomenon, it is necessary to link the

equations for the fluid flow outside and inside the porous medium. The equations governing the external

and internal flows must obey the matching conditions at the porous medium interface.

These conditions express continuity of normal and tangential velocities, pressure, and the normal and

shear stresses. The boundary conditions at the interface can be summarised as [30]

u ¼ up; p ¼ pp;
ou

ox
¼ oup

ox
; ð19Þ

where x is the direction normal to the surface of the porous medium. If these conditions are observed, there

is momentum conservation across the interface, and the results obtained are free from discontinuities.

It should be noted that the equations governing external and internal flows (Eqs. (2) and (11)) are very

similar. The main differences are in the term dealing with the drag of the solid matrix and the appearance of

the porosity value in the inertia term of the momentum equation inside the porous medium. Due to this

similarity, Hadin [29] proposed that instead of solving the two sets of governing equations separately, the

equations can be combined into one set. In this approach, the continuity and momentum equations (Eqs.
(1) and (2)) for the fluid flow are solved throughout the computational domain and the additional terms

required in the governing equations for the porous medium (Eq. (11)) are added to the ordinary momentum

equation (Eq. (2)) inside the domain region occupied by the porous matrix. With this procedure, the ve-

locity vectors obtained outside the porous medium represent the fluid velocities, while inside the porous

medium the velocity vectors represents the macroscopic averaged velocities (up). This ensures that the

matching conditions at the surface of the porous medium are automatically satisfied and the numerical

solution algorithm is greatly simplified.
3. Numerical method

Having described the governing equations, the next step is to introduce the solution method. The main

contribution of this work is related to the treatment of the free-surface and the fluid representation. The

numerical techniques used to solve the mass and momentum conservation equations are standard well-

known techniques described elsewhere [17,34]. Accordingly, this account is mainly focussed on the treat-

ment of the free-surface and only a short description of the numerical methods used to solve the
conservation equations is given.

The governing equations are discretised using the finite volume method [17], on a fixed orthogonal

grid, whose geometry is defined according to Fig. 5. The transport equations are solved only for the

region occupied by the liquid, and the free-surface boundary conditions are applied at the interface

between the atmosphere and the liquid region. A staggered grid is used for the velocity components,

while the scalar variables are stored at the nodal point at the centre of each of the control volumes.

The power-law differencing scheme [17] is used in the integration of convective/diffusive terms. In order

to avoid the diffusive constraint on the time step size, a fully implicit integration scheme was used in
the present work. The pressure–velocity coupling problem is solved by using the SIMPLEC (SIMPLE –

Consistent) algorithm, where the continuity equation is used to derive a discretised equation describing

the pressure field [35].



Fig. 5. Schematic representation of the grid used for the simulations, where r0 denotes the initial radius of the droplet.
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The marker-particle method is used to track the position and the shape of the liquid region. Despite the

increase of memory usage by comparison with the VOF method [36], the marker-particle method is

chosen in view of its simple implementation and easy expansion to three-dimensional situations if needed.

The marker-particle method tracks the position of the fluid through the use of virtual massless particles,

which represent the region occupied by the liquid. These particles serve to show the motion of the fluid

and its deformation through the computational domain and to indicate the correct location of the in-

terface, where the free surface boundary conditions should be applied. The marker particles do not have

any influence in the fluid flow calculation. They serve only to indicate the shape and position of the fluid
region, determining which cells are full cells (cells containing fluid), empty cells or surface cells (cells

containing the interface). Within this classification, the transport equations are solved only for the region

occupied by the liquid (full cells), and the free surface boundary conditions are applied at the interface

(surface cells).

As the marker particles are used to indicate the shape and position of the fluid region, it is necessary to

move the marker particles at each time step interval. Therefore, the calculation scheme is divided into two

stages at each time step. First, the governing flow equations are solved for the cells containing particles, and

the velocity field in the liquid is determined. Then each particle is moved according to the liquid velocity at
its position.

The key points of a correct representation of a free surface fluid flow are the particle movement tech-

nique and the correct implementation of the boundary conditions at the free surface. The next two sections

are devoted to these topics.

3.1. Particle movement

In order to move the marker particles, it is necessary to determine the fluid velocity at the marker po-
sitions. As the finite volume solution is discrete, i.e. the solution is known only at discrete points throughout

the computational domain, it is necessary to interpolate the velocities calculated at the nodal points to the

particle position. The particle velocity components (upart, vpart) are calculated using bilinear interpolation of

the velocity values at the nearest four nodal points, and the new particle positions after a time interval Dt
are obtained from the Taylor series considering only the first order term
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xðt þ DtÞ ¼ xðtÞpart þ uðtÞpartDt;
rðt þ DtÞ ¼ rðtÞpart þ vðtÞpartDt;

ð20Þ

where xðtÞpart and rðtÞpart denote the position of the particle at the instant t, xðt þ DtÞpart and rðt þ DtÞpart
denote the position of the particle at the instant t þ Dt, uðtÞpart and vðtÞpart denote the particle velocity

components obtained from the interpolation of the four nearest nodal points.

It is important to note that inside the porous medium the momentum equation is written in terms of the

Darcy velocity (up). In order to maintain physical consistency and ensure mass conservation, the particles
inside the porous medium must be moved with the fluid velocity (u) instead of the Darcy velocity (up). If the

particle velocity is calculated based on the value of the four nearest neighbours, its value will be relative to

up. Thus, in order to ensure mass conservation inside the porous medium

xðt þ DtÞ ¼ xðtÞpart þ
1

�
uðtÞppartDt;

rðt þ DtÞ ¼ rðtÞpart þ
1

�
vðtÞppartDt;

ð21Þ

where uðtÞppart and vðtÞppart denote the particle velocity components obtained from the interpolation of the

four nearest nodal points inside the porous medium, and � represents the porosity value. This correction is

necessary due to the volume averaging approach used to derive the momentum equations inside the porous
medium [26,27]. Based on this approach each control volume inside the porous medium is partially oc-

cupied by liquid and partially occupied by the solid matrix of the substrate. Therefore, the Darcy velocity

(up) represents the velocity vector averaged on a representative macroscopic volume (see [27] for details),

expressing contributions of the fluid flow and motionless solid matrix of the substrate. Thus, the actual fluid

velocity inside the porous medium is in fact represented by u or up=�.
3.2. Implementation of the free surface boundary conditions

In addition to the particle movement procedure, a free surface fluid flow description must account

correctly for the boundary conditions at the free surface. As explained in the previous section, at the free

surface the influence of the viscous stress due to the action of the external fluid is negligible, and the normal

stress is determined by surface tension and pressure gradients due to the external pressure.

Therefore, if the cells containing the free surface are considered to be inviscid [6,34,36], the viscous term

of the stress tensor vanishes, and the stress at the free surface is determined only as a function of the surface

pressure. In order to ensure that

rn ¼ �psn ð22Þ

the value of the pressure at each discretisation cell containing the free surface (surface cell) is set to the

surface pressure value (ps). If the free surface is inside the porous medium, the surface pressure is the
capillary pressure (pc). If the free surface is outside the porous medium the surface pressure is the pressure

due the macroscopic curvature radius (j). In addition, the pressure gradient term in the discretised mo-

mentum equation for each direction is multiplied by the component of the vector normal to the free surface

at each surface cell.

In order to implement these modifications, it is necessary to have knowledge of the slope and curvature

of the free surface, which are required to determine the pressure gradient term along the free surface and the

surface pressure due to surface tension outside the porous medium.
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3.2.1. Curvature radius and slope of the free surface

Although marker particles are used to indicate the shape of the region occupied by fluid during the

calculations, it is very difficult to quantify the slope and curvature of the free surface, since there is no clear
distinction between particles close to the surface and those in the core of the liquid. Therefore, in order to

indicate precisely the shape of the free surface and to determine its curvature radius and slope, an additional

set of particles is used, which are known as interface particles [37]. As shown in Fig. 6, these particles are

initially placed in order along the free surface and thereafter are moved using the fluid velocities, as for any

other marker particles, so that as the calculation proceeds the location of these particles indicates the shape

of the free surface. Accordingly, their position can be used to generate an interpolation function describing

the position of the free surface, and by using Eqs. (7) and (8), it is possible to determine the components of

the vector normal to the free surface and the curvature radius (j).
In the present work, two second order polynomial functions are used to describe the shape of the free

surface. The first expresses the variation of the position of the free surface in the r co-ordinate as a function

of the s co-ordinate, and the second expresses the variation of the position of the free surface in the x co-

ordinate as a function of the s co-ordinate. The position (r; x) of the free surface is then written as

ðr; xÞ ¼ ðx1ðsÞ; x2ðsÞÞ; ð23Þ

where x1ðsÞ is the second order Lagrange polynomial describing r and x2ðsÞ is the second order Lagrange

polynomial describing x. During the calculations of the surface pressure and normal vector for each control

volume containing the free surface (surface cell), the interpolating polynomials are calculated based on the
(r; x) position of the three nearest interface particles.

In order to account for contact angle between the liquid outside the porous medium and the surface of

the porous medium (h), an additional interface particle was added (as shown in Fig. 6). This particle was

positioned at the interface of between the atmosphere and the porous medium and its radial position was

calculated so that the shape of the surface of liquid outside the porous medium would present the correct

contact angle with the surface of the substrate.

The values calculated by Eqs. (7) and (8) represent point values of the surface curvature and normal

vector, which can vary strongly along the free surface. In order to determine the mean values of curvature
Fig. 6. Schematic representation of the interface particles.
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and slope of the free surface inside a control volume (calculation cell), the point values are numerically

integrated over the s co-ordinate along the segment of the free surface inside the control volume:

nr ¼
1

ðS2 � S1Þ

Z S2

S1

�x02 ds; ð24Þ

nx ¼
1

ðS2 � S1Þ

Z S2

S1

x01 ds; ð25Þ

j ¼ 1

ðS2 � S1Þ

Z S2

S1

j ds; ð26Þ

where S1 and S2 are the points where the free surface intersects the control volume boundaries, as shown in

Fig. 7.

3.3. Determination of the surface velocity

In the solution procedure the pressure correction algorithm (SIMPLEC) ensures mass conservation at
each control volume of the computational domain. However, since pressure correction is omitted in the

surface cells, as pressure is set to a fixed value, it is necessary to enforce mass conservation individually at

each surface cell. In order to accomplish this, it is necessary to ensure that the velocity of the free surface

moving inside a control volume is based on the amount of mass entering or leaving this control volume. The

specification of these values in the present work is the same as that commonly used in earlier MAC

methods. The velocities immediately outside the surface represent the surface velocity, and are defined as

the velocity between a surface cell and its adjacent empty neighbour. These velocities are calculated by the

continuity equation, in order to ensure the conservation of mass in the surface cells. However, if a surface
cell has two or more neighbouring empty cells, there are too many unknown velocities, and there is not

enough information to use the continuity equation. Thus, the individual terms of the continuity equation

should be separately set to zero. A complete description of the procedure used to determine the surface

velocity is given by Reis [38].

It should be noted that if mass conservation is guaranteed in all control volumes, the total mass flux in

the domain must be zero, i.e. for an incompressible fluid, if the free surface is expanding in one direction, it
Fig. 7. Schematic representation of the points (S1 and S2) where the free surface intersects the control volume boundaries.



Fig. 8. Schematic representation of the global structure of the solution algorithm.
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should be retracting in another direction to satisfy the volume conservation of the liquid. This provides a

continuous check of the consistency of the solution throughout the calculation.
3.4. Computational procedure

The computational procedure was implemented in FORTRAN 90. Fig. 8 presents a global view of the

solution algorithms, which involves the grid generation, initial particle positioning, labelling control vol-

umes, solution of the fluid dynamics equations and particle movement.
4. Results and model validation

In this section the results obtained by numerical simulation are presented and the accuracy of the model

is discussed. The main features of the phenomenon are discussed, but emphasis is given to the validation of

the model.

In order to verify the accuracy of the computational model, the results obtained by numerical simulation

are compared with experimental data. Four sets of experimental data available in the literature were se-

lected for comparison, from [4,19–21]. These datasets include photographs of the impact/absorption dy-

namics [4], measurements of final spread ratio of droplets liquid droplets [19,20] and images of liquid
droplets embedded in porous substrates just after impact, obtained by Nuclear Magnetic Resonance [21].

Tables 1 and 2 summarise the data used for comparison. It is important to note that the values of the

main governing parameters vary over several orders of magnitude, exploring a wide range of situations. The

dataset includes droplets of water, glycerol, n-heptane, diethyl-malonate (DEM) and methyl-salicylate

(MES) impinging on ceramic, sand, concrete, and beds of glass beads. Cases 1, 2, 3, 6 and 7 correspond to

the impingement of a liquid droplet on a consolidated porous medium, while the rest of the cases are for

unconsolidated porous media.

In order to enable an easier parameterisation of the results, and the extrapolation of the data obtained to
a wider range of physical situations, it is important to define non-dimensional variables to characterise the

droplet shape and its time evolution. Thus, the following dimensionless variables are introduced:

R� ¼ rdropletðtÞ
r0

; H � ¼ hdropletðtÞ
r0

; Th� ¼ thdropletðtÞ
r0

: ð27Þ

As indicated in Fig. 9, R� is non-dimensional droplet radius (also knows as spread ratio), H � is the non-

dimensional penetration depth and Th� is the non-dimensional thickness of the liquid layer outside the
porous substrate. In addition, a non-dimensional time (t�) is also defined

t� ¼ t
r0=u0

: ð28Þ

Grid and time step size sensitivity tests were performed to determine the optimum grid and time step size. A

numerical grid of 150� 100 nodal points (x� r) and a non-dimensional time step size (Dt�) equal to

2.0�10�4 were selected for all numerical simulations presented.

Fig. 10 shows the comparison of the time evolution of the shape of the liquid droplet during impact

obtained by numerical simulation and the photographs obtained by Chandra and Avedisian [4] (case 1).

Obviously, the photographs present the image of the portion of the liquid droplet outside the porous

substrate, while the numerical simulations display the liquid both inside and outside the porous region. The

photographs represent a perspective view of the droplet, since the camera was positioned at a small angle in
relation to the surface.



Table 1

Summary of the data used for comparison

Case Substrate/liquid V0 (m/s) r0 (mm) � K (m2) Dp (10�4 m) a

1 Ceramic/n-heptane 0.930 0.750 0.25 1.04� 10�12 0.750 0.447

2 Concrete/DEM 3.694 1.815 0.12 1.00� 10�14 0.259 0.040

3 Concrete/MES 4.045 1.815 0.12 1.00� 10�14 0.259 0.040

4 Sand/DEM 3.694 1.815 0.37 8.51� 10�12 1.000 0.447

5 Sand/MES 4.045 1.815 0.37 8.51� 10�12 1.000 0.447

6 Concrete/DEM 1.694 0.685 0.12 1.00� 10�14 0.259 0.040

7 Concrete/DEM 1.494 2.030 0.12 1.00� 10�14 0.259 0.040

8 Sand/DEM 1.694 0.685 0.37 8.51� 10�12 1.000 0.447

9 Sand/DEM 1.494 2.030 0.37 8.51� 10�12 1.000 0.447

10 Sand/water 0.520 1.825 0.47 7.98� 10�11 1.800 0.447

11 Sand/glycerol 0.520 1.715 0.47 7.98� 10�11 1.800 0.447

12 Glass beads/water 0.520 1.660 0.45 2.89� 10�11 1.200 0.447

13 Glass beads/water 0.520 1.660 0.45 5.02� 10�12 0.500 0.447

14 Glass beads/water 0.520 1.660 0.45 3.21� 10�10 4.000 0.447

Case 1 is taken from[4], cases 2–5 are from [19], cases 6–9 are from [20] and cases 10–14 are from [21]. Concrete properties were

based on [39,40], for Portland concrete. The value of h for case 1 was taken from measurements performed by [4]. As for the other

cases, there was no available data on h for the liquids and the substrates used. Since the results obtained by the model did not present

significant variation for contact angles ranging from 0� to 60�, droplets were considered to be perfectly wetting due to the lack of data.

Table 2

Summary of the liquid properties of the data used for comparison

Liquid q (kg/m3) l (Pa s) c (N/m)

n-Heptane 667.5 4.05� 10�4 2.01� 10�2

DEM 1055 4.00� 10�3 3.23� 10�2

MES 1179 1.50� 10�2 4.17� 10�2

Water 1000 1.27� 10�3 6.80� 10�2

Glicerol 1260 1.49� 10�0 6.34� 10�2
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In the first few instants of the impact, liquid projects radially from beneath the droplet away from the

impact point. This is caused by the rapid pressure increase in the liquid at the impact point. The numerical

simulation accurately predicts this phenomenon. The variation of the shape of the droplet is well predicted

throughout the impact/deformation, apart from minor discrepancies in the shape of the region between the

radial projection and the upper surface of the droplet, where there is a slightly smoother transition in the

numerical simulation than on the photographs.

Fig. 11(a) shows the time history of spread ratio of the impinging droplet (R�) and thickness of the liquid
layer over the surface (Th�). The agreement between the numerical and experimental data is remarkably

good. It is reasonable to assume that the numerical model gives a fairly accurate simulation of the process,

since the shape and the dimensions of the liquid droplet outside the porous medium are predicted

accurately.

In order to emphasize the differences between the impact of liquid droplets on permeable and non-

permeable surfaces, Fig. 11(a) also shows the time history of the spread ratio (R�) and the thickness of the

liquid layer over the surface (Th�) of a droplet impingement on a stainless steel surface. This configuration is

similar to that for case 1, the only difference is the fact that the droplet is impinging on a non-permeable
surface [41]. It is possible to note that the droplet impinging on a non-permeable surface presents a slightly

larger spread ratio since the early stages of the impact. As pointed out by Chandra and Avedisian [41],



Fig. 9. Definition of the spread ratio (R�), penetration depth (H �) and thickness of the liquid layer outside the substrate (Th�).
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when a liquid droplet impinges on a flat solid non-permeable surface, there is a rapid increase in the

pressure at the impact region, transforming the axial momentum of the liquid in a radial fluid flow, which

causes the droplet to spread over the surface. However, for the impingement on permeable surfaces, the

pressure increase is not so intense, since some liquid moves through the surface, despite the resistance

imposed by the solid matrix of the porous substrate. In addition, capillary effects also draw the liquid into

the substrate. As a result, lateral spreading is significantly reduced in relation to the impact on a non-
permeable surface.

Many authors (among others [14,42,43]) reported that the droplet radius spreading over a porous surface

increases as a function of tn, where the value of n depends on the porous media and liquid droplet char-

acteristics. The results obtained in the present work also indicate a tendency of increase in the drop radius

as a function of tn. The values of n obtained for the configurations described in Table 1 range from 0.155 to

0.5. These results are approximately similar to those reported by [42,43], which presented values of n
ranging from 0.176 to 0.41.

Fig. 11(b) presents the time history of the liquid penetration depth for cases 1 and 6–9. As discussed in
Section 1, previous modelling attempts to predict the rate of penetration of liquid into a porous medium

([42,43]) were derived from the Lucas–Washburn law, which does not account for inertial effects during the

droplet impact. The Lucas–Washburn law is based on a tn function, where a value of n is a constant equal to
0.5. It is possible to note in Fig. 11(b) that the impregnation curves resemble a straight line on the log-log

graph, indicating a tendency related to a tn function. Nevertheless, the value of n depends on the droplet

and porous medium characteristics, similarly to the behaviour found for R�. Furthermore, the shape of the

impregnation curves presents some deviations from a tn function. For instance, for cases 8 and 9 in

Fig. 11(b), there are some discrepancies between the impregnation curves and a tn function, while for the
cases with smaller permeability (cases 1, 6 and 7) a tn function is a good approximation. This fact may be

related to the more intense momentum dissipation for the cases with smaller permeability. In fact, the

momentum of the droplet plays a very important role in the dynamics of the process for the configurations

tested.

Fig. 12 presents the time evolution of the shape of the impinging droplet obtained by numerical sim-

ulation for two configurations (cases 6 and 8), which represent similar DEM droplets impinging on concrete

(case 6) and sand (case 8). The pore size for these configurations is considerably different, yielding to

significant differences on the porous media permeability as shown in Table 1. A smaller value of perme-
ability of the substrate yields to an increase on the drag term in the momentum equation (Eq. (13)), which is

responsible for the resistance imposed to the fluid flow. The reduction of the permeability of the medium



Fig. 10. Time evolution of the shape of the droplet: (left) numerical simulation vs. (right) experimental results [4].
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considerably reduces liquid penetration, consequently increasing lateral spreading as the droplet is de-

formed outside the substrate. Accordingly, there is much more lateral spreading for case 6 (Fig. 12(a)) than

for case 8 (Fig. 12(b)). The sequence of shapes displayed in Fig. 12(b) shows a much stronger absorption of

the liquid by the substrate. The drag due to the substrate is not strong enough to rapidly reduce the initial

droplet momentum. Furthermore, it presents relatively little resistance to the effects of capillary pressure in

relation to case 8. In spite of the differences in the dynamics of the impact and absorption for the con-

figurations tested, the final shapes obtained resemble a half-spheroid varying in penetration depth and
spread ratio according to the value of permeability of the configurations tested.

In order to evaluate the model capability of accurately predicting the shape of the droplet inside the

porous substrate, the results are compared with images of liquid droplets embedded in porous substrates



Fig. 11. Time history of (a) spread ratio of the impinging droplet (R�) and non-dimensional thickness of the liquid layer over the

surface (Th�) for case 1 and (b) liquid penetration depth (H �).
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just after impact, obtained by Nuclear Magnetic Resonance [21]. By contrast with the experimental ob-

servations of Chandra and Avedisian [4], where the resistance imposed by the porous substrate was large

enough to prevent significant liquid absorption, the conditions in the experiments reported by Reis [21]

were such that the droplets were completely absorbed by the substrate (due to the high permeability of the
substrates tested). Fig. 13 shows top view images of droplets embedded in the porous substrate after im-

pingement, obtained in the NMR experiments. The images indicate that the assumption of an axi-sym-

metric representation of the droplet is valid, in spite of the small deviations of the droplet shape in relation

to a perfect circle. As the droplet dimensions are relatively large compared to the particles and pores in the

substrate, there is not a large amount of shape distortion due to capillary action such as was observed by

Oliver et al. [44].

Fig. 14 shows comparisons of the shapes of the impinged droplet inside the porous substrate obtained

by numerical simulation and NMR imaging. According to the numerical data and experimental ob-
servations, the droplet resides in the porous medium in a shape similar to a half-spheroid, whose aspect

ratio depends on the porous medium and liquid droplet characteristics. There is a good agreement in the

shape predicted for cases 10, 11 and 12 (a, b and c, respectively). However, the image obtained for case

12 displays clear signs that the solid particles composing the porous medium are disrupted during im-

pact, which is not accounted for in the mathematical representation used in the numerical model. It can

be seen that there is a distortion of the upper surface of the liquid region. In fact, a small crater is

formed on the surface of the porous medium during the droplet impingement, and the structure visu-

alised on the upper part of the droplet represents a section of this crater. The model failed to predict
accurately the shape of the impinged droplet for case 13. The image shows that the impinged droplet on

50 lm glass beads produces more irregularities on the upper surface than the other configurations.

Smaller particles are more easily displaced or dragged by the fluid flow, since the porous medium

is unconsolidated. This causes a considerable discrepancy of the shape observed in relation to the

numerical prediction.

Fundamentally, smaller glass beads result in smaller permeability values of the porous substrate, which

should restrict the penetration of the liquid, causing it to spread more laterally (i.e. larger spread ratio).

However, although the observed penetration depth is slightly smaller for 50 lm glass beads than for 120
lm glass beads (case 12), the spread ratio is not larger. This discrepancy may be related to the disruption

of the upper surface of the shape of the droplet. The model is not able to predict this behaviour. Thus, the



Fig. 13. Top view images of the impinged droplet: (a) water droplet impinging on 180 lm sand – case 10, (b) glycerol droplet impinging

on 180 lm sand – case 11 [21].

Fig. 12. Time evolution of the shape of the impinging droplet obtained by numerical simulation for (a) case 6 and (b) case 8.
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Fig. 14. Comparisons of the shapes of the impinged droplet inside the porous substrate obtained by numerical simulation (left) and

(right) NMR imaging [21].
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model not only overpredicts the reduction in penetration depth in relation to 120 lm glass beads, but it

also overpredicts the spread ratio, mainly because it does not account for the disruption of the glass

beads.

Although the shape of the impinged droplet is relatively well predicted for case 14, there are minor

discrepancies in the penetration depth and spread ratio obtained. Penetration depth is slightly underpre-
dicted, yielding an overprediction of the spread ratio.
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Fig. 15 shows the comparison of the predicted spread ratio (R�) after the droplet reaches its final shape

obtained by numerical simulation and from experimental data. It can be seen that there is a reasonable

agreement between the model predictions and experimental observations, except for cases 13 and 2.
As already stated, the poor predictions in case 13 can be attributed to disruption of the particles in the

porous substrate; however, there is no obvious reason for the poor agreement found for case 2, though one

can conjecture a probable explanation. Case 2 presents a larger free surface deformation, where the spread

ratio is more than 5 and the thickness of the liquid film is reduced approximately 20 times in relation to its

initial value. For configurations such as that, Fukai et al. [22] have pointed out that the utilisation of

Eulerian formulations with a fixed grid for free surface flows may be questionable. They suggested that only

a body-fitted co-ordinate system with a deformable mesh is able to fully capture the free surface dynamics,

as the use of a fixed rectangular grid cannot represent with enough accuracy the normal and tangential
stresses on the free surface.

Furthermore, as indicated in Fig. 15, although the results for droplet impingement on concrete (except

case 2) are in close agreement with experimental data, the model has a tendency to slightly underpredict the

spread ratio, which contributes to the poor agreement in case 2. This could indicate that either the rep-

resentation of the transport inside the substrate is not as accurate for concrete as for other substrates, or

that the concrete properties assumed in the simulations may not represent very accurately the substrates

used by Roberts [19,20]. Roberts did not use a specific description of the concrete composition, but average

values were taken from the literature within the range of variation of these properties. Roberts attributes
the large standard deviation of the experimental data to differences between concrete ageing from one

experimental site to the other, illustrating the importance of the adequate characterisation of the substrate.

In general the model is able to reproduce the variation of the spread ratio with the governing parameters.

57% of the data is within 10% agreement, and 79% of the data is within 15% agreement.
Fig. 15. Comparison of the predicted final spread ratio obtained by numerical simulation and experimental data (H – [4],d – [19],m –

[20], j – [21]).
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5. Conclusions

A numerical model to simulate the impact/absorption of a liquid droplet on a porous medium has been
developed. In order to accurately represent the dynamics of the fluid flow, surface tension effects inside and

outside the porous medium were included in the model. In addition, special attention was given to the

movement of the free surface inside the porous medium, and the link between the fluid flow outside and

inside the porous medium, which ensures the requirement of momentum conservation across the porous

medium interface. In order to verify the accuracy of the proposed computational model, its predictions

have been compared with data from a number of experimental investigations. In general, the model gives

results that show good agreement with the experimental data. The main deviations were found for droplets

impinging on unconsolidated substrates with very small particles, where the impact of the liquid disrupts
the loose particles, an effect not accounted for in the mathematical description.
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